Stress analysis in the mandibular condyle during prolonged clenching: a theoretical approach with the finite element method.

نویسندگان

  • C Nishio
  • K Tanimoto
  • M Hirose
  • S Horiuchi
  • S Kuroda
  • K Tanne
  • E Tanaka
چکیده

Parafunctional habits, such as bruxism and prolonged clenching, have been associated with functional overloading in the temporomandibular joint (TMJ), which may result in internal derangement and osteoarthrosis of the TMJ. In this study, the distributions of stress on the mandibular condylar surface during prolonged clenching were examined with TMJ mathematical models. Finite element models were developed on the basis of magnetic resonance images from two subjects with or without anterior disc displacement of the TMJ. Masticatory muscle forces were used as a loading condition for stress analysis during a 10 min clenching. In the asymptomatic model, the stress values in the anterior area (0.100 MPa) and lateral area (0.074 MPa) were relatively high among the five areas at 10 min. In the middle and posterior areas, stress relaxation occurred during the first 2 min. In contrast, the stress value in the lateral area was markedly lower (0.020 MPa) than in other areas in the symptomatic model at 10 min. The largest stress (0.050 MPa) was located in the posterior area. All except the anterior area revealed an increase in stress during the first 2 min. The present result indicates that the displacement of the disc could affect the stress distribution on the condylar articular surface during prolonged clenching, especially in the posterior area, probably leading to the cartilage breakdown on the condylar articular surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تعیین توزیع تنش استخوان اطراف ایمپلنت‌های فک پایین در طرح‎های مختلف پروتز به هنگام Mandibular- Flexure

Statement of Problem: In the treatment of edentulous patients with implant supported fixed partial dentures several factors such as implant numbers, implant position, superstructure pattern and cantilever length must be considered. Mandibular flexture in function exerts forces in peri-implant bone, however this phenomenon has received little attention. Purpose: The goal of this finite element a...

متن کامل

The Effect of Post Material on Stress Distribution in Mandibular Second Premolar Tooth by Finite Element Analysis

Introduction: The restoration material commonly used as core material for pulpless posterior teeth is mostly amalgam due to its high strength and low cost and it can be used with or without pin. The aim of this study was to evaluate the influence of post material on stress distribution in mandibular second premolar tooth by finite element analysis. Method: The stress distribution was analyzed i...

متن کامل

A New Stress Based Approach for Nonlinear Finite Element Analysis

This article demonstrates a new approach for nonlinear finite element analysis. The methodology is very suitable and gives very accurate results in linear as well as in nonlinear range of the material behavior. Proposed methodology can be regarded as stress based finite element analysis as it is required to define the stress distribution within the structural body with structural idealization a...

متن کامل

Effect of Abutment Height Difference on Stress Distribution in Mandibular Overdentures: A Three-Dimensional Finite Element Analysis

Background and Aim: Implant-supported overdentures are a treatment option for edentulous patients. One of the important factors in determining the prognosis of overdenture treatment is to control the distribution of stress in the implant-bone and attachment complex. This study assessed the effect of implant abutment height difference on stress distribution in mandibular overdentures. Materials...

متن کامل

Finite element analysis of stresses in the maxillary and mandibular dental arches and TMJ articular discs during clenching into maximum intercuspation, anterior and unilateral posterior occlusion.

The objective of this study was to investigate distribution of stresses in the human TMJ discs, generated during clenching into various occlusal positions. The work presents a biomechanical finite element model of interaction of mandibular and maxillary dental arches and the TMJ discs of a particular person, based on real geometrical data obtained from spiral computed tomography two-dimensional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine

دوره 223 6  شماره 

صفحات  -

تاریخ انتشار 2009